SPECIAL CONTRIBUTIONS Determination of the Attenuation Map in Emission Tomography
نویسنده
چکیده
Reliable attenuation correction methods for quantitative emission CT (ECT) require accurate delineation of the body contour and often necessitate knowledge of internal anatomic structure. Two broad classes of methods have been used to calculate the attenuation map: transmissionless and transmission-based attenuation correction techniques. Whereas calculated attenuation correction belonging to the first class of methods is appropriate for brain studies, more adequate methods must be performed in clinical applications, where the attenuation coefficient distribution is not known a priori, and for areas of inhomogeneous attenuation such as the chest. Measured attenuation correction overcomes this problem and uses different approaches to determine this map, including transmission scanning, segmented magnetic resonance images, or appropriately scaled CT scans acquired either independently on separate or simultaneously on multimodality imaging systems. Combination of data acquired from different imagers suffers from the usual problems of working with multimodality images—namely, accurate coregistration from the different modalities and assignment of attenuation coefficients. A current trend in ECT is to use transmission scanning to reconstruct the attenuation map. Combined ECT/CT imaging is an interesting approach; however, it considerably complicates both the scanner design and the data acquisition and processing protocols. Moreover, the cost of such systems may be prohibitive for small nuclear medicine departments. A dramatic simplification could be made if the attenuation map could be obtained directly from the emission projections, without the use of a transmission scan. This is being investigated either using a statistical model of emission data or applying the consistency conditions that allow one to identify the operator of the problem and, thus, to reconstruct the attenuation map. This article presents the physical and methodologic basis of attenuation correction and summarizes recent developments in algorithms used to compute the attenuation map in ECT. Other potential applications are also discussed.
منابع مشابه
Attenuation correction in myocardial perfusion SPECT using sequential transmission - emission scanning with 99mTc [Persain]
Introduction: Nowadays, Imaging of the myocardial perfusion (MPI) using the single photon emission tomography (SPET) in the diagnosis of coronary artery disease, especially myocardial ischemia, is of great importance. In contrast to the coronary artery angiography, MPI is non-invasive, less expensive and more physiological. Unfortunately, this image is affected by the some artifacts. Thes...
متن کاملRespiratory motion correction in prostate cancer positron emission tomography: A study on patients and phantom simulation
Introduction: To investigate the effects of breathing cycle and tree diaphragm motions on prostate cancer tumors standard uptake value (SUV) during positron emission tomography (PET) and to correct it. Materials and methods: Respiratory motion traces were simulated on the common patient breathing cycle and tree diaphragm motio...
متن کاملValidation of computed tomography-based attenuation correction of deviation between theoretical and actual values for four computed tomography scanners
Objective: In this study, we aimed to validate the accuracy of computed tomography-based attenuation correction (CTAC) using the bilinear scaling method.Methods: The measured attenuation coefficient (μm) was compared to a theoretical attenuation coefficient (μt ) using four different CT scanners and an RMI 467 phantom. The effective energy of the CT beam X-rays was calculated, using the aluminu...
متن کاملReview of transmission scanning configurations in cardiac SPECT
The diagnostic accuracy of single photon emission computed tomography (SPECT) is profoundly influenced by attenuation phenomenon. Soft tissue attenuation degrades cardiac SPECT image quality, thereby decreasing the possibility of the detection of the lesions. A variety of correction techniques based on different assumptions have been used to reduce the impact of attenuation. Several types of sy...
متن کاملEvaluation of effect of gold nanorods and spherical gold nanoparticles of different sizes on X-ray attenuation in computed tomography
Introduction: To date, gold nanoparticles (GNPs) have been demonstrated to have great potential as contrast agent for CT imaging and therapeutics. This study was designed to evaluate any effect on X-ray attenuation that might result from using GNPs with a variety of size, surface chemistries and shapes. Materials and Methods: Spherical GNPs and gold nanorod...
متن کامل